2D Shapes

3D Shapes

Indices

Percentages

Pyramid Method For Percentages:

Note we use the pyramid on the right if increasing/decreasing by an amount rerest amount + $\left(amount \times \frac{96}{100} \times time\right)$ Interest = $amount \times \frac{96}{100} \times time$

Quadratics

Compound Measures

Congruent Shapes

Direct/Indirect Proportion y is ... proportional to xDirectly: y = kx, Inversely: $y = \frac{k}{x}$

 $\frac{1}{2}$ x base x height base x height

 $l \times w$

 $\frac{1}{2}$ × (sum of parallel sides) x height

 $c = 2\pi r$, $A = \pi r^2$

 $\frac{\theta}{} \times 2\pi r$

 $\frac{\theta}{160} \times \pi r^2$

SA = 2xy + 2xz + 2yzere x, y , z are side length V = xyz

 $SA = 2\pi rh + 2\pi r^2$ Note: Curved part: $2\pi rh$

Note: Curved part: $\pi r l$, l is slant length

 $V = \frac{1}{3}\pi r^2 h$

 $SA = 4\pi r^2$

Note: Hemisphere $3\pi r^2$

 $v = \frac{4}{3}\pi r^3$

Note: Hemisphere= $\frac{2}{\pi}\pi r^3$

V =Area of cross section x height

 $V = \frac{1}{3} \times base \ area \times h$

 $(cx^ay^b)^d = c^dx^{ad}y^{bd}$

 $x^a \div x^b = \frac{x^a}{x^b} = x^{a-b}$

 $x^{-n} = \frac{1}{x^n}$

 $a^{\frac{n}{m}} = (\sqrt[m]{a})^n$

a as a percentage of b

 $\frac{a}{b} \times 100$

Look for the words as a percent of

difference × 100 original

Look for the words percentage gain/loss/increase/decrease

 $\frac{\%}{100}$ × amount

given amount

amount $\left(1 \pm \frac{\%}{100}\right)$

Amount 1± %

Look for the words originally, at the beginning, before...

Note: Make sure t and % are same unit of tim

 $\label{eq:FV} \text{FV} = \text{PV} \Big(1 + \frac{r}{100}\Big)^t$ FV=future value, PV=present value

t=time, r= interest rate

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, a \neq 0$

 $a\left(x\pm\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}$

 $c-\frac{b^2}{c}$

speed= distance

density= time mass

Three sides of each triangle equal

Two sides and included angle equal

Two angles and corresponding side equal

Contains right angle and hypotenuse and

100

 $\frac{n}{n} = \frac{y^n}{y^n}$ and $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$

Area of Triangle

Area of Rectangle

Area of Trapezoid

Length of an arc

Area of a Sector

Cuboid Surface area

Cylinder Surface Area

Cylinder Volume Cone Surface Area

Sphere Surface Area

Cone Volume

Sphere Volume

Prism Volume

Pyramid Volume

Multiplication

Negative Powers

Fractional Powers

other amount

One amount as a % of the

(wants answer as a %)

Percentage gain/loss

(wants answer as a %)

Find percentage of an amount

Given % of an amount,

Increasing/decreasing by

Given % of an amount

after amount has been added or subtracted, find

the full amount

Simple Interest

(interest on initial amount)

Compound Interest (interest

Quadratic Function: Solutions

to $ax^2 + bx + c = 0$

Completing The Square

 $ax^2 \pm bx + c = 0$

SSS (side side side) SAS (side angle side)

AAS (angle angle side)

RHS (right hypotenuse leg)

Max/Min Value

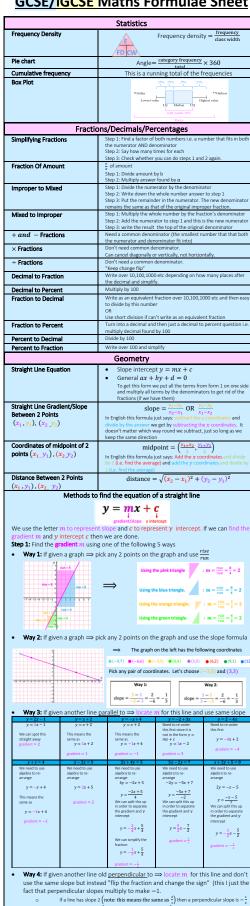
Speed

Density Pressure

added also earns interest)

find the full amount

Division


Fractions

Cuboid Volume

Area of Parallelogram

Circumference & Area:

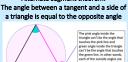
GCSE/iGCSE Maths Formulae Sheet

cate m for this line and don't me slope but instead "flip the fraction and change the sign" (this I just the

- If a line has slope $-\frac{2}{3}$ then a perpendicular slope is $\frac{3}{2}$. If a line has slope $\frac{1}{3}$ then a perpendicular slope is -3
- **Way 5:** If given 2 points \Rightarrow use formula $\frac{y_2-y_1}{y_2}$

Step 2: Find the y Intercept c using one of the following 2 ways

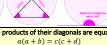
• Way 1: read it off the graph (if given graph this is where the graph crosses the y axis


• Way 2: plug the point given (x, y) into the equation (replace x with the x value and y with the y value).

• y = mx + c y = mx + cMake sure the slope m from step 1 is plugged in and solve/re-arrange for c using algebra. Make sure you plug in the point that the line passes through, not just any

 $(x-a)^2 + (y-b)^2 = r^2$ centre (a, b), radius r Circles

© MyMathsCloud		
Right Angled Trigonometry		
Pythagoras		$a^2 + b^2 = c^2$
SOHCAHTOA		subtract, if finding hyp ⇒add
		$\cos x^{\circ} = \frac{adj}{hyp'}, \ \tan x^{\circ} = \frac{opp}{adj}$
Sin Cos A Tan		
Exact Trig Values		sin 0 30° 45° 60° 90° 0 1 2 3 4 0 4 3 2 1 0 2
Non Right-Angled Trigonometry		
Sine Rule	Finding an	a side: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ a angle: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
Cosine Rule	Finding a side	$a^2 = b^2 + c^2 - 2bc \cos A$ e: $A = \cos^{-1} \left(\frac{b^2 + c^2 - a^2}{2bc} \right)$
Area of Triangle		$\frac{1}{2}absinC$
Sine Rule	Finding a	a side: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Finding an angle: $\frac{\sin A}{a} = \frac{\sin C}{b}$ Functions		
Inverse		th y , swap $x \& y$, solve for y
Composite	fg(x) means plug $g(x)$ into $f(x)$	
Transformations	a=vertical stretch of a , b=horizontal stretch of $\frac{1}{b}$	
af(bx + c) + d "anything in a bracket affects	c=translation c units x direction	
x and does the opposite"		
	Circle Theorem	ns
Angle at the centre is double the angle at the circumference Beginnerence:		
	Angles subtended in the same segment by a chord are equal	
Regularisments: - both angles come from the - both lines coming out of both - b		Diameter
Tangents which meet at a point are equal in length		Opposite angles of a cyclic quadrilateral add to 180°


Watch out: All points need A tangent meets a radius at

Alternate segment theorem:

Extra helpful facts to remem

a(a+b) = c(c+d)

We can split this up in order to separate the gradient and y

 $y = -\frac{1}{2}x - \frac{5}{2}$

Series (iGCSE only)		
Arithmetic sequence:	nth term:	
	$u_n = a + (n-1)d$	
	sum of n terms	
	$S_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}(a+l)$	
	a =first term, d= common diff, $l =$ last term	
Geometric sequence:	$u_n = ar^{n-1}$	
	$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$	
	where $a =$ first term, r= common ratio	
Differentiation (iGCSE only)		
Rule	$x^n \Rightarrow nx^{n-1}$	

Rule	$x^n \Rightarrow nx^{n-1}$	
	Remember: Constants go to 0	
Turning/Stationary Points (Max/Min)	Solve $\frac{dy}{dx} = 0$	
Proving whether Max/Min	Use knowledge of shape of graph	
-	+x2 happy face min	
	−x ² sad face max	
	$+x^3$ max on left, min on right	
	-x3 min on left, max on right	